((1.14*10^-3)x)-(1.48*10^-4)=x

Simple and best practice solution for ((1.14*10^-3)x)-(1.48*10^-4)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((1.14*10^-3)x)-(1.48*10^-4)=x equation:



((1.14*10^-3)x)-(1.48*10^-4)=x
We move all terms to the left:
((1.14*10^-3)x)-(1.48*10^-4)-(x)=0
We add all the numbers together, and all the variables
-1x+((1.14*10^-3)x)-0.000148=0
We calculate terms in parentheses: +((1.14*10^-3)x), so:
(1.14*10^-3)x
We multiply parentheses
11.4x^2-3x
Back to the equation:
+(11.4x^2-3x)
We get rid of parentheses
11.4x^2-1x-3x-0.000148=0
We add all the numbers together, and all the variables
11.4x^2-4x-0.000148=0
a = 11.4; b = -4; c = -0.000148;
Δ = b2-4ac
Δ = -42-4·11.4·(-0.000148)
Δ = 16.0067488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{16.0067488}}{2*11.4}=\frac{4-\sqrt{16.0067488}}{22.8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{16.0067488}}{2*11.4}=\frac{4+\sqrt{16.0067488}}{22.8} $

See similar equations:

| 68=n−4 | | ​(3x=-75) | | -2x+40=-60 | | (1.14*10^-3)x-1.48*10^-4=x | | 0,02x=5. | | 3t–8t=7t–8+2t | | )1.14*10^-3)x-1.48*10^-4=x | | 3(4b+1)-2(3b-5)=19 | | s−32=47 | | `10-8n=2(4-5n) | | t+2=48 | | 15x-26=108 | | y=256(.5) | | 5y+1=32 | | 4−2x=10 | | 230-x=13 | | 10+(x+4)=19 | | `6x-2=x+13` | | 3x-6-5x=8x-6 | | 3(867-2y)=2600-6y | | 3/4x-2(4+2x)=-1/2x+1/5 | | x-2/x=4/5 | | −10-7x=32 | | 104=4s | | 4xx36=144 | | $$1​x+2=3x+4 | | 1​x+2=3x+4 | | 2(63)=5x+7+8x-11 | | x/1.25+12.8=16 | | -5.8=n/7.5-6.2 | | 16=t/1.25+12. | | 8*x/8=0 |

Equations solver categories